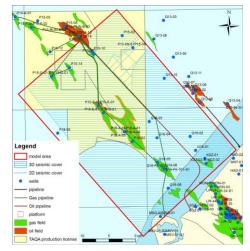


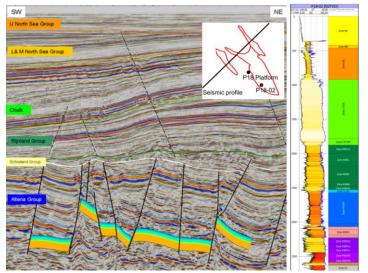
OVERVIEW

- The ROAD project
-) The P18 gas field
- The monitoring plan
 - Site characterisation
- The corrective measures plan
- Towards a stable situation
- Concluding remarks



THE ROAD PROJECT

- Rotterdam Opslag en Afvang Demonstratie Rotterdam capture and storage demonstration
- E.ON Benelux, Electrabel & TAQA Energy, integrated CCS chain, 250 MW, post-combustion,
- ➤ Onshore capture, transport and off-shore, storage of ~1.1Mt of CO₂/year



THE ROAD PROJECT - P18-4

-) P18-4 is a gas reservoir in clastic Triassic rocks at over 3 km depth, just offshore the Dutch coast
- One of three (four) compartments, faults of various generations

P18-4 MONITORING PLAN

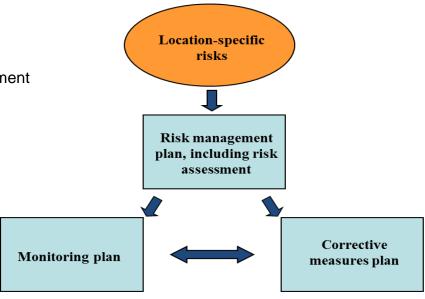
- Monitoring and Corrective measures plans are part of the an EU storage permit
- For ROAD the monitoring plan needs to comply with:
 - Provisions in the EU CCS directive and implementation thereof in the Dutch Mining Act
 - Requirements of the EU Emissions Trading System (EU ETS)
 - Specific requirements to ROAD as a demonstration project
- Under the EU Storage Directive a monitoring plan has to provide details about monitoring like:
 - Parameters to be monitored
 - Monitoring technology employed and justification for technology choice
 - Monitoring locations and spatial sampling rationale
 - Frequency of application and temporal sampling rationale

MONITORING PLAN REQUIREMENTS EU DIRECTIVE

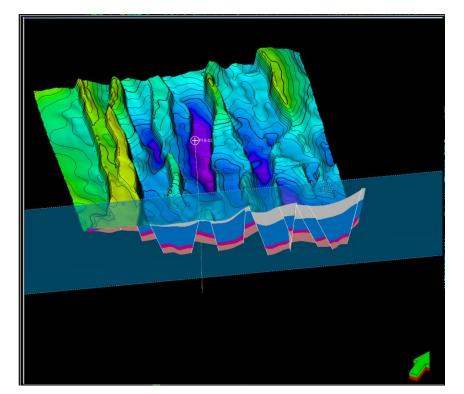
Comply with EU Storage Directive:

- Compare actual and modelled behaviour of CO₂ and brine
- Detection of significant irregularities
- Detection of CO₂ migration
- Detection of CO₂ leakage
- Detection of significant negative effects for environment, drinking water, nearby residents, the biosphere
- Evaluation of effectiveness of corrective measures
- Prove safety and integrity of the storage complex, including the assessment of complete and permanent storage

operational

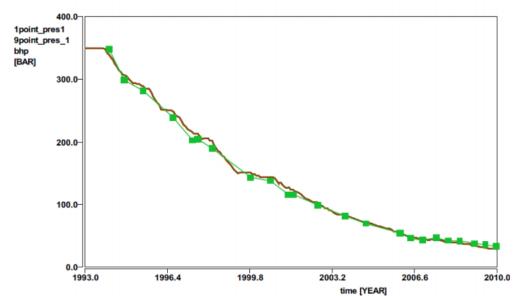

possible anomalous situations

closure and transfer


P18-4 MONITORING APPROACH – RISK BASED

- Risk-based monitoring plan
 - Ensures safety and integrity storage complex
 - Necessary information for transfer responsibility to government
 - Additional learning with respect to large-scale CCS
 - Prove effectiveness of corrective measures
 - Balance between efficiency and costs
- Consistency between:
 - Monitoring plan
 - Corrective measures plan
 - Other plans & assesments...

-) Geological modelling
- Dynamic flow modelling
- Geomechanical modelling
-) Geochemical modelling
- Well investigations
- Migration studies



- Geological modelling
- Dynamic flow modelling
- Geomechanical modelling
- Geochemical modelling
- Well investigations
- Migration studies

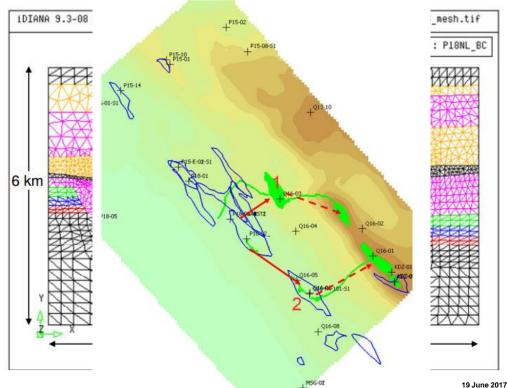
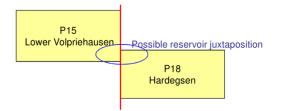
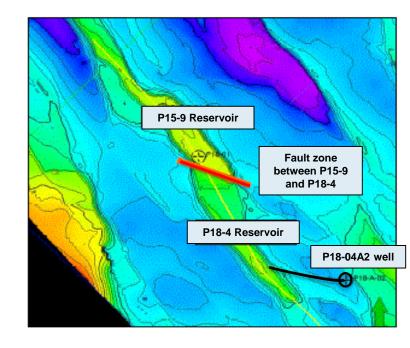


Table Name: Res_Pres_04A2 Plot Name: bhp6_res_prs Time=2010.00 [YEAR]

- Geological modelling
- Dynamic flow modelling
- Geomechanical modelling
- Geochemical modelling
- Well investigations
- Migration studies





- Focus on reservoir integrity and behaviour
- Important unknown: sealing capacity of fault P18-4/P15-9

Lower Volpriehausen P15 Phi: 5% k: 0.1 mD Hardegsen P18

Phi: 12% k: 200 mD

- The extensive site characterisation could not bring forward any show stoppers.
- It was concluded that the P18-4 reservoir is suitable for CO₂ storage.
- Some key factors:
 - Yes Knowledge obtained during exploration and production indicates the a reservoir with a tight seal
 - > The produced & under pressured reservoir will be brought back close to its original stable (hydrostatic) pressure
 - The reservoir held natural gas for millions of years, indirectly proving the quality of the storage site

P18-4 MONITORING PLAN

- Designed to:
 - > verify CO₂ containment and reservoir integrity during operation
 - to demonstrate long-term stability after the operational phase

- This is achieved by:
 - Measuring the absence of any leakage through direct detection methods (e.g. at the wells)
 - > Verifying indirectly that the CO₂ is behaving as expected through reservoir pressures
- The current monitoring plan includes therefore collection of data such as:
 - Pressure, composition, flow and temperature monitoring
 - Well integrity monitoring (repeated) logging, measuring annuli pressures and checking of annuli fluids
 - Time-lapse seismic surveys (contingency monitoring), in case of irregularities
 - Monitoring of shallow overburden, to indicate absence of migration to the seabed

P18-4 MONITORING PLAN

Parameter	Pre-inj.	Injection	Post- inj.	Post- aban.	Post- trans		
Injection rate (flow meter)							
Well head p, T (pressure device, DTS)							
CO ₂ composition (gas samples)							
p, T reservoir (downhole device, DTS)							
Stabilised p, T in reservoir (+ well shut-in)							
Well integrity (logging)							
Plug integrity (p test, inspection, fluid sample)							
Sea-bed pock marks (echo sounding)							
Pressure in adjacent reservoir (pressure device)						Monitoring type	
Seismic survey (overburden, sideburden)						Regular – mandatory Regular – required (prelim. estimate)	
Gas analysis at pock marks (gas samples)							
14 ROAD P18-4 - Monitoring plan	•			•		Optional – contingency	,

MONITORING PHILOSOPHY – TRAFFIC LIGHT

Measured values have to match values predicted by models

Green

- Monitoring data fall within expected range
- Monitoring frequency gradually decreased

Yellow

- Deviations in monitoring data no corrective measures yet
- Explain deviation & update models
- Possibly additional measurements

Red

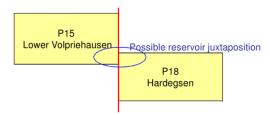
- Data outside pre-defined bandwidth
- Take corrective measures
- Scale up intensity of monitoring

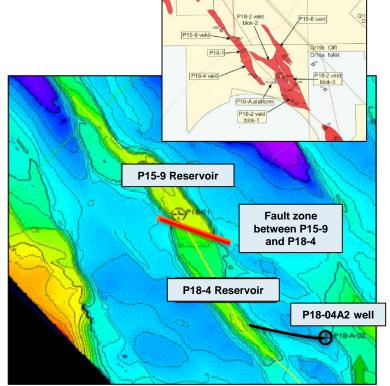
Data bandwidths defined prior to start of injection

P18-4 CORRECTIVE MEASURES PLAN

The corrective measures plan defines the actions, measures or activities taken to correct significant irregularities and is like the monitoring plan, site specific.

- Communication with stake holders and reporting to authorities
- Additional monitoring like:
 - Monitoring in neighbouring wells
 - Seismic survey (e.g. when migration out of reservoir suggested by monitoring data)
- Adjust injection (pressure, rate)
- Large-scale intervention
 - In case of well damage
 - In case of problems on platform (venting procedures)

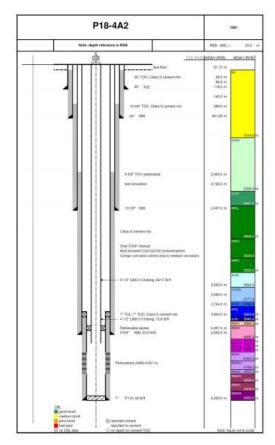

P18-4 LARGE SCALE INTERVENTION


- In case of leakage into neighbouring gas field P15-9:
 - Cease injection at P18-4, in case neighbouring gas field qualifies for CCS, continuation of injection after successful request for storage licence
 - Well work overs
 - Termination of injection
 - Venting activities

Lower Volpriehausen P15 Phi: 5% k: 0.1 mD

Hardegsen P18

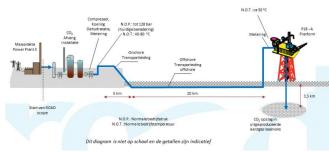
Phi: 12% k: 200 mD


P18-4 EVENTS VS. CORRECTIVE MEASURES

Event	Corrective measure			
CO₂ outside complex				
To overburden	Additional well monitoring; repair cement job			
From well to biosphere	Additional well monitoring; repair cement job			
From reservoir to biosphere	Additional monitoring; cease injection			
To adjacent gas field	Monitoring adjacent field; fix wells in adjacent field			
Induced seismic activity				
Re-activated fault(s)	Additional monitoring; cease injection			
Failure / Damage				
Well damage	Repair well			
Cap rock, reservoir damage	Additional monitoring; cease injection			
Monitoring				
Technical failure monitoring system	Cease injection; adjust monitoring			
Conceptual failure monitoring system	Cease injection; adjust monitoring			
Entire system behaves differently				
Limited injection rate capacity	Adjust p, T; adjust monitoring			
Unpredicted behaviour in well or reservoir	Cease injection; adjust p, T; adjust monitoring			

TOWARDS A STABLE SITUATION

- Prediction of post injection pressures
- Indicate well integrity
- Assure complete/permanent storage of CO₂
- According to regulations, we need:
 - All available data to suggest complete and permanent storage
 - Show that for a certain period since end of injection
 - E.g. 20 years, that storage is complete and permanent, but may be shorter if Competent Authorities are convinced
 - Plug and abandone wells, removed injection facilities, etc.



CONCLUDING REMARKS

- ROAD monitoring and corrective measures plans addresses the requirements of the EU CCS directive in a relatively simple and straightforward approach
- Compact monitoring plan is mainly possible due to the site being a depleted gas field:
 - Large body of knowledge and experience available
 - Proven seal, limited monitoring effort needed to verify containment
- Traffic light model to describe site conformance flexible and adjustable when new data and models become available
- Final version of monitoring plan after detailed site design completed

Carbon Capture and Storage (CCS) chain

